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A far-wing line shape theory that satisfies the detailed balance principle is applied tg@reH;O

system. Within this formalism, two line shapes are introduced, corresponding to band averages over
the positive and negative resonance lines, respectively. Using the coordinate representation, the two
line shapes can be obtained by evaluating 11-dimensional integrations whose integrands are a
product of two factors. One depends on the interaction between the two molecules and is easy to
evaluate. The other contains the density matrix of the system and is expressed as a product of two
three-dimensional distributions associated with the density matrices of the absorber and the
perturber molecule, respectively. If most of the populated states are included in the averaging
process, to obtain these distributions requires extensive computer CPU time, but only have to be
computed once for a given temperature. The 11-dimensional integrations are evaluated using the
Monte Carlo method, and in order to reduce the variance, the integration variables are chosen such
that the sensitivity of the integrands on them is clearly distinguished. Numerical tests show that by
taking into account about 18andom selections, one is able to obtained converged results. We find
that it is necessary to consider frequency detuning, because this makes significant and opposite
contributions in the two band-averaging processes and causes the lines to be asymmetric. Otherwise,
the two line shapes become symmetric, are the same, and equal to the mean of the two shapes
obtained including the frequency detuning effects. For the pure rotational band, we find that the
magnitude of the line shape obtained from the positive line average is larger than that obtained from
the negative line average far>0 and vice versa fow<0, and their relative gap increases as the
frequency displacement from the line center increases. By adopting a realistic potential model and
optimizing its parameters, one is able to obtain these two line shapes and calculate the
corresponding absorption coefficients that are in good agreement with laboratory data. Also, this
same potential yields good theoretical values for other physical properties of the djlOtgas.

© 2002 American Institute of Physic§DOI: 10.1063/1.1436115

I. INTRODUCTION use the Monte Carlo methddThis system is important in
atmospheric applications where we have shown that the ab-
In previous papers, we have presented the theory for theorption (known as the “foreign continuum”is in good
calculation of far-wing line shapes and the correspondingagreement with experimental result®ecause the absorp-
absorption coefficients for interacting pairs of molecdfes.  tion by H,0—H,O pairs(the “self-continuum’) is more im-
Assuming only the binary collision and quasistatic approxi-portant, we would like to extend our theory to the case of
mations, we have shown that by using the coordinate reprawo interacting asymmetric tops; the dimensionality in this
sentation to describe the orientation of each molecule beforgase is 11, thus implying a big challenge to obtain converged
and after the tranSition, we are able to reduce the pl’oblem tﬂgsuhs' In a previous paper, we have shown that by consid-
the calculation of multidimensional integrals. The dimen-gring an interaction potential containing cyclic coordinates,
sionality of the integrals depends on the type of moleculeshe dimensionality is reduced to 7, and one can obtain con-
involved; specifically for two linear moleculege.g., verged results.
CO,—-CO, or CO,—Ny) the dimensionality is 7, while for One of our goal in the present paper is to remove this
one asymmetric top and a linear partfery., bO—N,) itis  yestriction and calculate the far-wing line shape for
9. For the first case we were able to obtain converged resulﬁzo_ H,0 using the most general interaction potential. To
with a sophisticated interaction potential using conventiona!accompnsh this goal, it is necessary to modify the Monte
integration methods However, for the latter case, we had to cario routine used previously such that the sensitivity of the
integrand on the integration variables is clearly character-
dElectronic mail: gma@giss.nasa.gov ized. A second goal is to investigate the asymmetry of line
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shapes; in order to do this, one has to carry out band avepne can use this formalism in order to test the accuracy of the
ages in a more sophisticated way and consider the frequengpotentials.
detuning effect in the line shape calculations. Based on the
present work, one can conclude that the band-average line
shapes are asymmetric apd, in addition, one would expeqt e GENERAL FORMALISM
different line shapes for different bands.
In order to reduce any unphysical effects in calculated®. Symmetric correlation function and spectral
results, we carry out all numerical calculations based on fordensity that satisfy the detailed balance principle
mulas that satisfy the detailed balance principle exactly and  The absorption coefficient(w) of a gaseous sample
have a higher accuracy in the short-time lithiks expected,  with a unit volume is given by
this increases the difficulty because the formulas become
more complicated. Thanks to great advances in computers 42
made in recent years, we are able to overcome this obstacle a(w)= 2 —nawtanhpho/2)[F(w)+F(-w)], (1)
successfully. Finally, we utilize a realistic interaction poten-
tial applicable for the dilute kD gas that not only gives heren, is the number density of absorber molecules and
good agreement between theory and expenmentat\ﬁ

. . . e spectral densityr(w), is the Fourier transform of the
temperature-dependent second virial coefficients and differ- . ; )
. . ) . : correlation functionC(t). One separates the total Hamil-
ential scattering cross sections, but also yield absorption cq-_ . . : . .
efficients that are in good agreement with the ex erimentcfjloman H into two parts: one commutes with the internal
self-continuum data ?Ne notge that because the thF:aor hascoordina’ces of the molecules while the second does not. We
sound phvsical bas"s e expect that theoretical res )Ilts caE— te that this distinction oH usually coincides with the
:Jt dp %/ ' | ,I{ » W )t(p hich Idl b tu | ivision of the interaction into two partd/,s, andV,,;, the
gyﬂ.a elt ta ak;to_wer emperatulze,bw Ic Wofu th Ie extreme ¥sotr0pic and the anisotropic interactions, respectively. Ac-
cuft to obtain experimentally because ot the fower Vaporcordingly, the total Hamiltoniami is decomposed as
pressure attainable, are valid.
The paper is organized in the following way. In Sec.
Il A, we present the expressions for the correlation functions

and the spectral densities that satisfy detailed balance ex—h H dH th turbed Hamiltoni fh
actly. In Sec. 11 B, we introduce two band averages and thd/MEreMa and iy, are tne unperturbed Hamittonians of the

corresponding line shape functions. The application of theatbrigrsbire?i":;d;heli?gor:slsvchu;?:tf:pe;t'verlgélsrsjfggcgrcee’lg?,\:
coordinate representation for the system consisting of wé P pp gas p '

asymmetric tops is presented in Sec. I C. Our main purpos‘gne can mtroduce. the binary CO”'S'Or.] gpproxmaﬂon and
ocus on a much simpler system consisting of one absorber

is to introduce the density matrices of the absorber and the S :
. : ) ._...and one bath molecule. For simplicity, we do not introduce
perturber molecule, which are three-dimensional distribu-
. - ew symbols for the two-molecule system.
tions, and to show how to calculate them. This is the mos ) .
. It has been shown that one is able to expi@éy in the

costly calculation in the present study and the results ob; - L . 9

. . t—0 limit, which is valid to ordert?, ad
tained are used to get the line shapes later. In Sec. Il D, we
discuss how to calculate the frequency detuning correction. L2

. .. . = a’ Tt ~BVani
The method is similar to that used to calculate the line shapes C(V) npv Tri(e VPoPaM) ' pisce
without this correction, except one has to developed a new X [e ILant(g~iLat/2 ,_Pbpaﬂ)]} 3)
technique to deal with the integrand containing a derivative.
The necessary generalization of the Monte Carlo method Qhere n, is the number density of the bath molecules
11-dimensional integrations is discussed in Sec. Il E. In Sec._ Tr{e #H0o]/Tr{ e #M], and the Liouville operatork and,
’ a

IIF, we discuss a realistic interaction potential that gives - corresponding tH, and V., respectively, have been
ani a ani ’

good agreement with various molecular data measured in theoquced. For later convenience, we can introduce a sym-

dilute gas phase, including the absorption coefficient. Then_ . . . L _ . .
in Sec. IIG, we apply the theory to obtain two line shapemetrlc correlation functionC(t)[=C(t+i#//2)], defined

i . . b
functions numerically for several temperatures and d|scussy

some of their general features. We use these results to calcu- _ L2 Ve st v
late the corresponding absorption coefficients and compare C(t)=npr Tr{(e™2 \/ﬁpa Mpg ) pis 7N
those obtained in the 300—1100 chspectral region for the St —iLt/2 U4, 18 1o BVonf2
. . Xle anr(@ a e an . 4
room temperature with experimental results. In Sec. Ill, we [ ( \/ﬁpa #pa )] bo@

discuss the results obtained and the conclusions drawn frorErom these expressions, it is easy to verify 1)
the present study. P ; y

The present work, together with the previous calcula-= C(t+i%8) and C(—t)=C(t), which guarantees both of
tions for simpler systems, constitute a general formalism iffneém satisfy the detailed balance principfe.
which one can obtain from first principles the far-wing line By expressingC(t) explicitly as summations over indi-
shapes for any colliding pair for which a realistic potential iscesi, j, i’, andj’, where each represents all the quantum
available. Conversely, if experimental data for the line shap&umbers necessary to specify the energy levels of the ab-
or the corresponding absorption coefficients are availablesorber molecule, one is able to wrigt) as

H:Ha+ Hb+ViSO+VaniEHO+Vani1 (2)
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Cy=2> X eeiteorint2n, Trol(j| pru pY*Vpoli)
iy
X(i| pisge™ PVan'2e ™ Vank|i"\(i"| \Jppp2 mp ")

X[ Varhe Vanl )}

©)

In the above expressiom;; =E;—E;, and the the subscript
b of trace denotes the trace over the remaining variable

including all magnetic quantum numbers. We assume that th
interaction between two molecules does not depend on the

vibrational quantum numbers. As a result, in E5). the vi-

brational quantum numbers béndi’ are identical and those
of j andj’ are also identical, but the former could differ from
the latter. By choosing th& axis of the space-fixed frame
along the separation between the two molecules, the intera
tion V,(r,Q,,€Q,) depends on the orientations of the two
molecules represented 6y, andQ},,, respectively, and on

the distance between the centers of mass, which can be c
sidered as a parameter since the translational motion
treated classically. In Hilbert space associated with the inte

nal degrees, one denotes the eigenvalues and eigenvectors

Van(r,Q4,Q5) by G, and|{), respectively; thus
Vanl(1,Qa, Q) [) =G (r)[2). (6)

Then, by performing the Fourier transform of the correlation

function E(t) and carrying out an integration ovefi.e., the
classical ensemble average ovewhich is valid within the
quasistatic approximationone is able to obtain the symmet-

ric spectral density (o),

~ 1 1
F(w)=;2 E N)‘(ij;irjr w_i(wji‘f‘wjrir) . (7)
i i/j'
The explicit expression fd¥;; .- (w) is given by

Xijsivj (@)= Hy(@) 2 2 2 (ljiy)
{n mp iy
X(jiplpy sty pplii p) (i ol )i "i5)
X(i'i5|popd o Mi o) gl m), (8

:gwsh a positive resonance line wilh)—E;>0 and a nega-
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changeqij}—{ji} and{i’j’'}—{j’i'}, it is easy to verify
that')}ji;j/i,(—w)=}ij;i,j/(w).4 In terms Ofﬁ(w), the ab'
sorption coefficient(w) becomes

872

3¢ N sinh( Bhw/2)F(w).

11)

a(w)=

Finally, it is worth mentioning thaf (w) =e~#"“"?F () and
(—w)=F(w). The latter is required by the detailed bal-
ance principle.

B. The averaged line shapes with the frequency
detuning correction

© We consider a band consisting of transitions between

states with two vibrational quantum numbers specified. For
simplicity, we designate a pair ofandj (i.e., a line by the

on-

ssymbolk. If necessary, we use symbdls andk_ to distin-

tivF resonance one witl; —E;<0. Then Eq.(7) can be

0
expressed as
1 (

E(w):; o= 5 (@, o)

kz ; %k+;n

+

w+§(wk+_wn) (12)

|

wherewy (=|wji|) is positive. We note that in Eq12) we
have not explicitly characterized the symboby + or —

yet. For the pure rotational band resulting from transitions
without changing the vibrational quantum number, both the
symbolsn in two terms of Eq.(12) could ben, andn_
because there is no link between the choicesk @nd n.
Meanwhile, for a vibrational bandk,, or k_ is always asso-
ciated withn_, or n_, respectively. In this caseandi’, and
alsoj andj’, share the common vibrational quantum num-
bers and, in general, these two different vibrational quantum
numbers determine whethkr(i.e., a pair ofi andj) andn
(i.e., a pair ofi” andj’) belong to the positive or the nega-
tive resonance. Therefore, for the vibrational bands the sym-

wherei, andij, are indices used to specify the states of thebol nin the first term of Eq(12) should be understood as

bath molecule an¢im} indicates the summation over all mag-

netic quantum numbers. In the above expressfrbp,(w) is
defined by

e*BViso(fc)*B[Gg(fc)Jan(rc)]/Z,

©)

where G;,(r) denotes @/dr)[G,(r)—G,(r)], andr, are
roots of the equation

ﬁg,](w) = nbv4772r§

Gé”y](rc)

Gro)— G, (Io)=w. (10)

We note that in Eq(7), the summation indices j, i’,

and in the second term as . This custom is applicable for
the equations following.
On the other hand, by introducing two common line

shape functiong . (w) andy_(w) one assume tha (w)
can be expressed as

1

- 1
F(w):; Tk)zj(+(w_wk+)

(w

E Pk|/uk|2
ke

1

Tlarw?t "

(w+wk+)

where gy (= p;} is the reduced dipole matrix element and

and |’ exclude their magnetic quantum numbers since the, = \/rp]—. In order to find expressions fdg, (w) and
summation over them has been carried out. The functiong§_ (), one performs the Fourier transform for E¢E2) and
Xij:ij’(w) introduced above are symmetric for the exchange(13) and compares the results to their time—domain versions.
of indices {ij}<{i’'j’}. Meanwhile, with respect the ex- As a result, the following equation has to be satisfied:
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~ i(wp +o)t/2 % ~ 1 —
22 X, (el ek ten = 0?5 2 D X | 0 5 (0, —0n)— 0|
kK; n * k= n - 2 *
(21)

~ —i(wp —wpt/ .
+k2 ; X cn(t)e™ (k. menltl2 In Egs.(20) and(21) the arguments of functions depend
- on the summation indices and this results in difficulty obtain-

Z|H

11 2 2oiop t ing Y+ (w) and’y_(w) directly. In practice, one prefers to
=F EM(“’) i Pl %€k derive an expressions oy, (») andy_(w) in which the
summations are performed over functions whose arguments
1 are independent of the summation indices. For this purpose
iy 2 Tw, t ’
+F EZX‘((”)); pid “ (14 the frequency detuning approximation must be introduced.

As an example, we consider E@0). With the Taylor series
where for simplifying the notations we use the expansion of¥k, L w— %(wk++wn)+m over o, one can
symbols %k+ ;n(t)- Xk ;n(t)a ‘7:[(1/“’2)%+(w)]- and approximatéy . (w) as
FA(llo?)¥_(w)] to represent the Fourier transforms of

k, (@), X (@), (Lo?)X(0), and (1b*)x (), re- X+(0)=x+(w)
spectively. Furthermore, one assumes that one can separate -
Eq. (14) into two equations: one associated with a summa- +w2Nk2 > |o- 5 (0, +on) X, in(@),
tion over the positive resonance lines and the other over the = 0
negative resonance lines, (22
1 _ where
F ?”)'(_‘_(w)):kE ; ’)‘ek+;n(t)el(wk++wn)t/2 )
+ ~ ~
(=05 2 2 R, (), (23
; ks
2 ps| ms|%€! s, (19 ~ . . .
Sy and X|,(+;n(w)Eka+;n(w)/dw- On the right side of Eq.
and (22), the first termy . (w) comes from simply ignoring the
frequency detuning and the second term is a correction. We
1 . note that in our previous studya shift parameter was intro-
- — S —i(o —ont/2 :
]:( w2 X(“’)) _2 En: Xk_ (D) 1% / duced to treat the effects from the frequency detuning. How-
ever, it is better to calculate the contributions from the sec-
E |26 0.t (16) ond term directly because it turns out that, except for some
S Psl s simple cases, the previous method could introduce numerical

errors. Similarly, one can approximdte (w) as
Then, with Eq.(15) it is easy to obtain an expression for

F[(Lw?) Y. (w)] that is valid in the short-time limit: X-(0)=x_ (o)
1 ,1 N
f(ZZ)H(w)) tw Ng ; ‘1)4_2(‘1)&r wp) ka;n(w)-
1 i[(wy +op)2—w]t @9
~ iy I w U)n -
"N kz+ ; X, n(DET ’ 7 where
whereN is the normalization factor defined b . 1 -
Y ()=’ > D T (@ (25
NZE pul %, (18

Using the symmetries’yy ., (—w)—”)}k in, (w) and

i, (—w)= Xk 1 (w) (the latter is approprlate for the
andw is the average positive resonance frequency defined bEfure rotational ban ds onlynentioned above, one can show

that

—_ = 20, 19
N% il Wk, (19 X-(—w)=xi(w), (26)

By performing the inverse Fourier transformation, one isand
able to derive the expression f§r, () valid at|w|—,

X- (@)= (o). (27)
~+(w)=w2%2 > X, | 0 %(wk++wn)+5. If one does not distinguish the two shapes(w) and
oo M (20) Y_(w) in the expression foF (w) given by Eq.(13) and
replaces them by only one shaRéw), one can pursue a
Similarly, one can derive similar derivation fory(w) and obtain
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form averages, and also to great advances in computers made
(29) in recent years, we are able to overcome these obstacles and
make significant progress.

1 ) and the Monte Carlo method as two powerful tools to per-
o= 5 (wxt o) EK il ud %

X(w)= wzz ; ’5(k;n

A simple versiony(w), defined by The details about the coordinate representation and the
A , B ) Monte Carlo method have been presented previdushnd
X(w)=w % ; Xien(®) ; pil %, (29)  are not repeated here. We only report new features. Since we

want to carry out band averages in a more sophisticated way,
can also be introduced. In this case, btfw) and x(w) we have to introduce a positive and a negative resonance
become symmetric and, in addition, up to the first-order apsdipole operator in the Hilbert space of the absorber molecule
proximation, () is the same a§(w) because there is no denoted by, andu,,, respectively. The former is defined
net contribution tdy(w) from the first derivative term of the by
Taylor series expansion §fi..[ @ — 3(wy+ wy,)].

In summary, we note that within thi; formalism no mat- po= > {iluml DG, (30)

ter which functions are chosen for the line shape, in terms of Ej>E

them the symmetric spectral densifw) always satisfies and the latter by

the detailed balance principle. The formalism outlined above

was developed_several years &gblowever, at that time, o= 2 Gl DIDG]- (31)
except for the simplest systems, such as,€8r, to calcu- E<E

late converged line shapes for systems of interest in atmcwe note that for the vibrational bangsdenotes a higher

th lculation involvi di lizati d f tha\?ibrational qguantum number thamn Eq. (30) and vice versa
M C? cua |ont|n\{.o IVItrr:gta E\gor;a zation tproce ure ot they, Eqg. (31). Then, with Eqs(8) and (23), one can rewrite
anisotropic potential that exhausts computer resources ver () as a summation ovefand 7,

quickly.

1 -
X+(w)=wZN§E He ()G, (32)
C. The coordinate representation 7

n .
Recently, we have developed a formalism based on th\e,thereG“") are defined by

coordinate representation in which the eigenfunctions of the_, <

orientations of the system are chosen as the complete set %((n)Z%: (< \/apimlu“mp;/ﬂ m)* (¢ \/apallmﬂmpala/ﬂ ),
Hilbert spacé~3 The advantage of introducing this represen- (33
tation is that the diagonalization of the potential becomes

unnecessary and the main computational task is transformed

to the carrying out of multidimensional integrations. For sys-

tems consisting of two linear molecules, or one linear anoG&n):% (<l \/Epimﬂﬁpilﬂ 77))*<Z|\/EP;/4M;P;/4| ),

one asymmetric top molecule, or two asymmetric top mol- (34)
ecules, the dimensionality is 7, 9, and 11, respectively. In _ o

addition, we have shown that using the Monte Carlo methodf,or the pure rotational bands and for the vibrational bands,

one is able to evaluate up to the nine-dimensional integral€SPectively. For simplicity, we will only present formulas

tions required for systems such as@+N,.2 Combined applicable for the pure rotational ba_md; anq simply mention
with techniques developed recently to handle sophisticateflferences between them and their vibrational analogs. In
potential modelg,one is able to implement realistic poten- the expression fok, () given by Eq.(32), the summation
tials for these systems and derive accurate, converged resuteyms are products dfl;,(w) and G;,,. The former are
for the far-wing line shapes and the corresponding absorptiof#nctions of w and their values depend on the interaction
coefficients. potential between the two molecules. The latter are common
In the present Study1 we are interested in a system Con‘or all frequencies and their values are independent of the
sisting of two HO molecules. In order to reduce any un- potential. With the coordinate representation, no matter how
physical effects, we base our study on formulas that satisfgomplicated the potential is, to calculate valuegigg(w) is
the detailed balance principle exactly and have a higher acstraightforward since the potential is a diagonal operator. On
curacy in the short-time limit. Besides extending the Montethe other hand, to obtain th’.é(zﬂ) involves a lot of calcula-
Carlo method to evaluate 11-dimensional integrations retions, because they contain the density matrices that are dif-
quired for line shape calculations, we would like to answerferential operators. Fortunately, for a given temperature,
some questions in depth. We want to know whether the linéhese calculations need to be done only once since results
shapes are asymmetric and if they are, to find out the origimbtained are applicable for all potential models. Thus, we
of the asymmetry. In other words, we want to know whethercan calculate them and store them in an input file.
it is necessary to introduce two line shapes instead of one, In the coordinate representation, the basis functighs
and why they differ from each other. As expected, in com-are nothing but the direct produ¢t(Q2,—Q,,)®[5(,
parison with our previous studies, this introduces extra diffi-— €y,)), where the notations dfs(2,—€,,)) and|5(£,
culties. Fortunately, thanks to the coordinate representation £2,,,)) are used to represent specified orientations of the
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absorber and the perturber molecules, respectively. Accord4,0. It is well knowr® that the wave functions of 4O,

ingly, one can separate the dependenc&gf, on the ab-  |jrm), can be expressed in terms of an expansion of
sorber and on the perturber molecules and express it as tRgmmetric-top wave functiongkmy,

product ofG,,,) and Gy,

: va > [j7m) =2 Ul Jjkm)
G(iv):% (<5(Qa_ﬂa§)|9a MmPa |5(Qa_9a7])>)*

- ol o A2
X{8(Qa— Q)| p e mp 2 8(Qa— Q) =2 Uil (71) 8.2 Lok By) |,
X[(5(€2 = o) [Vpp| 8L~ Q)| (36)
j _ a—imagy] —ikyy i :
EG;@,,)Gb(gy,)- (35) Wher_eDm,k(a,,B,y) (=e _ dink(B)e ") is t+he rotational
matrix. With Eq.(36), one is able to express,,,, as
For the vibrational bands, the dipole moment operatgrin
i > LT ~L
Eq. (35) is replaced by, . . Gaun=2 2 A D (@en Bion Yien)s 37
In comparison withG,,,,, the expressions foGy,,,) L kk’

are simpler because they do not contain the dipole operatofhere a(rnys Bienys and y(,, are the three Euler angles

For the linear, symmetric top, and asymmetric top moleculesysed to represent a rotation resulting from two successive
the explicit expressions foBy, .,y have been presented and rotations, i.e.,

the corresponding profiles have been discussed in our previ- R _R1 R

ous papers;® and we do not repeat them. With respect to (@gn) Biem V) =R (g Brayy) (a,,,ﬁ,?.n(,é)é)
G;(m, one has to derive the corresponding expressions o o .
valid for the linear, symmetric top, and asymmetric top mol-and the summation index=0,1,2,...; both indice& andK’
ecules, respectively. We do not present all of them, rathefun from —L to L. In the above expression, the coefficients
only the last and the most complicated one applicable foAPL(K, are given by

* 1 ; ; - j1.7 j2.T:
Ao =gz "DV X (2114 1)(2)+ 1)4g,,g, e AEr T El2 2

1171 1272

X > > (—1)tia(2)1+1)(2) 5+ 1)e ARG T TEG VAW (11 1y, 1L)

Ui 157

X

> (—DuR UL"’_KTCulsz,kK—kK))(E (DR U2 CGsL K K —KK)
K 1 2 K’ 1 T

X

j i S j2 i Sy
E UkllTluleiC(J 11 aklokl)) ( kE UszZUkZTéC(lelz k20ky) |, (39

kq 2

where E(j,7) are the energies of the state labeled by the  With Egs.(37) and (38), one can conclude theﬁ;@n)
guantum numbergand 7, g, is its nuclear spin degeneracy are three-dimensional distributions over three Euler angles
factor, C(j1j,L,kK—kK) is a Clebsch—Gordan coefficient, used to represent a rotation of the molecule from the initial
W(jsj-j1i1,1L) is a Racah coefficient, and the summationorientation to the final one, labeled lgyand », respectively.
overj; andr; indicated by a symbd]j; i}, is limited toa  With respect toy (w), one can introduceG,,,, and
range withE(j;71)>E(j171). In deriving the above expres- write down similar equations to Eq§32) and (35). Mean-
sion, the body-fixed frame is chosen such that the dipolgyhije, Gay Can be given in terms ofAL,, and
r_noment of I-iO lies along itsz ax_|s(|.e., thell ' representa— Dk (@ BiemYizn) in the same way as shown by Eq.
tion). In addition, because the line shape functions are nor- ™ ) L= . . ) L
malized with respect to the magnitude of the dipole moment(37)- The expression foA,, is almost identical toA,

as shown by Eqg18), (20), and(21), the latter is assumed to Shown by Eq(39), except that the summation ovirandr;

be unity. We note that for the vibrational bands, the expresis limited to a range WitrE(j:,LT:/L)iE(lel)-_

sion for AL, is similar to that given above, except that the  Although the calculations Ok andAy, are straight-
states labeled by, 7, andj,7} and the states labeled pyr, ~ forward, there are many summation loops involved. Usually
and j,7, belong to a higher and a lower vibrational level, On€ introduces a cut-offn,, to exclude less populated states.
respectively. In addition, another limitation dE(j}7}) It turns out that a$maxincre§ses, notf)nly more CPU time is
>E(j,7y) is also enforced in the summations. required to calculate eam\tK, andAkK, because the ranges
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the Euler anglesy and y obtained at
T=296 K for j ha—=26. The values of
the Euler angle3 is fixed and the four
plots presented here correspondgo
=5°, 22°, 38°, and 50°, respectively.

360

of loops become larger, but also the number to be evaluateathere the ranges of the indicés K, andK' are from 0 to
increases quickly. Fortunately, one does not need to calculaty o, from 0 to L, and from—L to L, respectively;exk:
all of them since some are identical and others are zero. For1 for K=0, and exx:=2 otherwise. The expression for

; +
H,0, due to the symmetry dfi} , all the coefficientsAg,, Ga(m is similar to Eq.(40), except a replacement @ka,

and Ak; are zero unless their indicéé andK' have the by Ag,,. However, due to the symmet%K, k,K men-
same evenness or oddness. In addltlon for the nonzero ctiened above G+§ (B,u,v) does not differ fromG,,,,

eff|C|ents there are symmetrlesé\KK, AL+K Krs AL (B,u,v) Slgnlflcantly In fact, it is easy to show that

KK’
=A" K=K andAKK, AK,K As a result, if one introduces a G;g,,)(ﬁ’,u’v):G;(g,,)(ﬁ,U,—U)- (41)
cut-off j ,,.,=23 (which is the highest angular quantum num-
ber of the initial states listed in the pure rotational band ofThis means that with respect to the sensitive variafglesnd

the HITRAN 92 databas, there are 18424 values ﬁKK’ u, they have same distribution patterns. Meanwhile, with re-
spect to the insensitive, one is the others’ mirror image.
and 18424 ofAKK, needed to be evaluated. If one uses an BecauseGa(m(,B u,v) a”dGa(gn)(,B u,v) are three di-
even higher cut-off ,,,=26, these numbers become 26 235. mensional, it is impossible to plot their profile in one figure.
By utilizing a dozen CPUs, we are able to manage the lattejve calculate several two-dimensional distributions of
in less than two days. We note that to obtain these coefﬂG 2em(@.Bo,7) over the Euler angles: and y at 296 K
cients is the most costly calculational part in the presenbbtamed with the fixeg8,=5°, 22°, 38°, and 50°, respec-
study. tively, and present their corresponding three-dimensional
After all AKK, and AKK, are available, we can easily plots in Fig. 1. From the figure, one can easily see that the
caIcuIateGa(g,]) and G,(,,,, which are three-dimensional magnitudes OfGa(gn) decreases very fast g& increases.
distributions over the Euler angleg;,), By andy,)- More specifically, forBy=22°, 38°, and 50° the magnitudes
In cases where no confusion results, the subscripts of thestecrease by about one order each. In addition, t
Euler angles are omitted. However, it is better to expresexhibit symmetry with respect to the axes« y)/2 and
them as distributions over their two sensitive varialdeend  — y)/2. In order to show the profile d‘r;;(gn) at 296 K over
u [=(a+vy)/2] and one insensitive one [=(a— y)/2]. the two sensitive variable8 andu, we calculate its average
The explicit expression foB ) used in the numerical cal- overv and present the resulting two-dimensional distribu-

a(¢ : A . : : :
culations, is given by ! tions in Fig. 2. One has to imagine that the profile shown in
Fig. 2 extends along another dimension, i.e. utaxis that is
G;(m(ﬂ,u,v)zz > AEK,fKK,dkK,(ﬁ) perpendicular to th@—u plane ano_l is missing in _the figure.
L Kk’ Furthermore, the range of extension along thaxis varies
X {cog (K+K")u]cog (K—K")v] from the minimum 0 ati=0 and 27 to the maximum 2z at

u= . As shown in Fig. 2, there are five sharp peaks located
—si(K+K")ulsin(K—=K")v]}, (40 along theu axis atu=0, 7/2, 7, 37/2, and 2r, respectively,
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FIG. 2. The two-dimensional distribu-
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and they are symmetric with respect to the plarer. The  for this derivative are available, to evaluate values of
magnitudes of these peaks decrease very fagtinsreases. 5({<+ -n(®) is much more difficult thar’)T(k+ -n(w) because a

We note that in contrast with Fig. 1, a logarithmic coordinatenymerical subroutine is required to obtain the former from
is used to plot the magnitudes. From Figs. 1 and 2, one cafhe |atter. Given the fact that there are abouf t&ndom
conclude that the peak at=m is dominant. We do not selections in the Monte Carlo calculations, this means that
present the profiles d&,,, for other temperatures, but sim-  this subroutine must be called Limes. Fortunately, except
ply mention that they have similar patterns, but the peaksor this part, the other parts of the second term do not depend
become lower and wider as the temperature decreases. QR the frequency. Therefore, it is better to reverse the order
the other hand, it is unnecessary to present similar figures fQjf the derivative and the summatidie., integral opera-
G(¢y because one can easily obtain them from Figs. 1 anglons. In other words, instead of q\lyzhzn[a_ %(“"u

ZH Infact,hFigs. 1 ar_ldh2 zrelals;sappéicabli@;(in)Fe_xc‘lalpt +on) Xk, :n(®), We can calculate a new term given by
that one has to switch the labeisand y in Fig. 1. Finally, (UN)Z, So[@- Yo + o) G m(@). The results ob-

we note that becaus@;(g,])(ﬁ,u,v) andG,,,,(B,u,v) are i )
independent of the potential, it is wise to calculate them firsf@ined are a function of the frequency represented by a set of

and store them in files. Then, when one carries out repeatefftlues Of the integrations and a set of corresponding frequen-

calculations for . (») and§_(w) to optimize the potential cies. Then, W_|th _the numenca_l subroutine, one is able to

models. one does not need to evaluate the values (ﬂbtaln the derivatives that are just the second term we want

G* (/'3 u,v) and G, (B,u,v) again. In addition, using to calculate. With this technique, the subroutine is called
a({m)\Fr= a({m)\Fr = : '

the interpolation method one can easily obtain their value nly once and the cost to calculate the second term of Eq.

for a random selection g8, u, andv from these input files. 22) is comparable to the first.

Otherwise, one has to independently evaluate them abdut 10 The same method used f’?[*(“’) 'explamed in Sec. I1C
times in the Monte Carlo calculations. is also applicable for evaluating this new term. We do not

repeat a detailed discussion, but simply mention things that
+
are different. In this case, a new set of coefficieBub(, can
+
_ _ be introduced whose expression is almost the sarmqiﬁxs
So far, our discussion has been focused on how to appléﬁiven by Eq. ( )

: : = 39), except a factor of{w—3E(j;]
tAhe coordinate representaﬂon for calculatlwg(w) and —E(j1m) +E(jbmh) —E(jo7,) ]} is inserted into the inside
X—-(w). In order to calculat§ , (w) and’y_(w), one has to

) S of summation loops over the indicgs, 71, j2, T2, j1, 71,
go further by adding contributions from the frequency detun-;

, ) ) : &é and. Similarly, one can introduce a set of coefficients
ing. We briefly explain a method used to obtain the second?, - ) ) _

term of Eq.(22) associated witfy , (). In comparison with ~ Bkk associated with the second term of &2¢) for ()
evaluating the first terny , (w), the only additional obstacle whose expression is the sameE#&, except the summation
is that the integrand containsaderivatﬁdg;n(w). Inprac- over j; and 7; is limited to a range withE(j;7)

Y 1
tice, except for special cases in which analytic expressions<E(j;7;). We note that in comparison wika, andAkK,

D. Contributions from frequency detuning
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Bk; andB,, have similar symmetrieBk;FBLfK,K, and ablesinG, ., is appropriate. The same conclusion is also
L= oL~ LY oL . true for Gy, . This is a further step necessary to evaluate
Bk =Bk, xcepByy, == By Then, one can intro- 11 _gimensional integrations because, in comparison with 7
dlife two tLh_ree-dlmensmnaI distributions associated W'”br 9-dimensional ones, not only the dimensionality becomes
Bkk: and By, respectively, and store their values in two higher, but also the distributions of the integrand become
input files the same way ang(g,,)(B,u,v) and  more nonuniform. However, in order to incorporate these
Gaey(B:u,v). Finally, by comparing these two distribu- new choices for the integration variables, one has to pay
tions, their patterns are closely related to each other, asxtra attention to their ranges. More specifically, siogg,
shown by Eq(41), except one has to add a minus sign on thevaries from 0 to 2r and Uy Varies from—ug,y to Ui,
right side since their values be+come opposite. when Osus, and fromu,,,— 2 to 2m—u(,, whenm
As expected, to evaluatBkK, and Bkw requires con- <Uus<2m, the integration_ volume becomes_a lozenge-shaped
siderable CPU time, and the costs are approximately tharea. Because the algorithm VEGRSs designed for carry-
ing out integrations over rectangular volumes, one cannot

L L~ " .
same as for,, and Ay In practice, for specified, K incorporate the integration variables directly. Therefore, we

andK’, one does not need to calculate the four coefficient§1ave modified VEGAS such that the new version enables

rately, rather on n eval Il of them simulta- . . "
iigis?;/e y, rather one can evaluate a one to evaluate integrations over a volume containing a

lozenge-shape area. Then, with respect to the sensitivity, the
dependence of the integrand on all integration variables is
well characterized. This enables one to fully exploit the
power of the Monte Carlo method. As a result, numerical
tests show that with a few more random selections than be-
As an example, we explain how to calculgte(w) from  fore, one is able to evaluate the 11-dimensional integrations
Eq. (23) in detail. In the coordinate representation, the sumsyccessfully.
mation of ﬁg,?(w)G(*m over { and n becomes a 11- The above discussion is also applicable for evaluating

dimensional integration oﬂﬁm(w)e&ﬂ) over the Euler other 11-dimensional intggrations, i..e., thosej{ot(w), and
anglesBass Yarr @bss Borr Ybrr Xans Bays Yan: @by f~0r the frequency dgtqnlng correction te.rms)pi(w) and
Bb,. and y,, in which the first five (including a,,=0) Y- (w) because their integrands have similar features. Nu-
specify the initial orientations of the system and the last sixnerical tests show that with the modified version of VEGAS,
specify the final ones. We note that due to the rotationaie are also able to evaluate these as well.

symmetry of the whole system, one can always assape _

=0. For such high dimensionality, the Monte Carlo methodF Potential models

is the only way to evaluate the integrals. Based on the progress mentioned so far, we are able to
It is well known that in the Monte Carlo computation, it ~gjculate converged line shapes fop®+H,O without or
is important to distinguish the sensitive and insensitive variyith the frequency detuning correction, iy, (w) and
ables of the integrand, and to incorporate this into the intej(i(w), or Y. (w) and¥_(w), from potential models pro-
gration variables since this enables one to tailor the imporyded unless they are too complicatélg., those consisting
tant sampling and to reduce the variance dri\matically. In thgf several decades of terms and paramgtédiisere are sev-
present case, the integrand is a productHyf,(») and eral potential models available in literatures, such as the
G&ﬂ) . With respect to their variables, the former is a smoothHF,™* CI,*? Watts!® RWK1,* and RWK2 model* We have
function, as shown by Eq9), but the latter’s values vary tested some of them to calculate the line shapes and the
wildly and could differ from each other by many orders of corresponding absorption coefficients. Unfortunately, it turns
magnitude. This means that the sensitivity of integrand isout that the results obtained from these models predict too
mainly determined by;&n), or more specifically, byS;(m much absorptions in comparison with experimental data. It
andGp ¢, . We note thaG;(m andGy,,,) depend on rela- has been shown in our previous stadythat the far-wing
tive orientations between the initial and final positions of theshape is very sensitive to the angular gradients of the poten-
absorber and perturber molecules, respectively. Therefore, fital. The reason is that contributions to the line shape come
is proper to represent the final orientations of the systenmainly from energy contour areas at which large angular
labeled byz in terms of the body-fixed frames instead of the gradients of the potential are exhibited while the potential
space-fixed frame. The body-fixed frames introduced hergalues themselves are relatively small or even negative. We
are those attached to the two molecules at their initial orienexpect that such features would not fully manifest their ef-
tational positions. For the asymmetric-top molecule, onefects on other physical measurements on which these models
choosesy;, B;, v¢y @y Bieyy» @Ndy(sy, instead ofa,, were developed. Therefore, the failure of these models is not
B¢y Ver @y, B, andy, as variables. However, similar to surprising.
the behavior ofGy,,, explained in our previous studythe As an alternative, we assume that the potential for
sensitivity ong(m on its two variablesy(,,y and y,,y is  H,O—H,O consists of a Coulomb interaction represented by
interwoven such that neither is a sensitive or insensitive varia site—site model, a short range repulsive interaction repre-
able, but their combinations,,,,, andv,, are. Therefore, sented by another site—site model, and an isotropic attractive
in order to well characterize the sensitivity, a replacement oflispersion interaction proportional to1/r®. For each HO,
Qeny s Bieny» andyy BY Beyys Uiy, @ndu ., as vari-  there are two positive point chargeg located at the H at-

E. A Monte Carlo calculation of 11-dimensional
integrations
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FIG. 4. The calculated self-broadened absorption coeffidienunits of
FIG. 3. The self-broadened far-wing line shape ofCH(in units of  cn? molecule *atm %) at T=296 K in the 300—1100 cnt spectral region
cmtatm™) as a function of frequency» (in units of cni®) for T is represented by\. For a comparison, the experimental values of Burch
=296 K. The dashed curve represeRts(w) calculated from the positive et al. are denoted by+ and those from Cormieet al. are denoted by,
resonance line average and the dotted curve repregers) calculated along with their error bars.
from the negative resonance line average. The solid curygéd§ which is
the mean ofy, (w) andy_(w).

G. General features and numerical results for the line

shapes

oms and one negative point charg€q at a position along We have presented the line shape formulas applicable for
its symmetry axis a distanakfrom the O atom(A positive both the pure rotational band and vibrational bands. But, in
value ofd means the charge 2q is located on the same side the present study, the numerical calculations are carried out
as the center of masdn addition, we assume that there are for the former because, not only is this the strongest band of
three repulsive force centers: two located at the two H atombl20, but also most of the continuum absorption measure-
and one at the O atom, and the repulsive interactions havergents are performed in its high-frequency wing.
form Ajje”"ii Ipij, wherer;; are distances between force cen- It is worthwhile to report general_features of line shapes
ters, andA;; andp;; are adjustable parameters. Accordingly, found from numerous test calculations before we present
the potentiaV(r,Q,,Q;) considered here is given by more specific results. First of all, we find that differences
betweeny . (w) andy_(w) calculated from the same poten-
. B tial are always less than numerical errors. The formulas used
V(rlﬂalﬂb)ZE E ﬂ+2 2 Aje i e — =, to get x;(w) and xy_(w) are the same, but the input files
icajeb Tij icajeb r representing the two distributionﬁ;gn)(ﬂ,u,v) and
(42) Gaen(B,U,v), respectively, are different. However, these
two distributions differ from each other only slightly. In fact,
and it contains seven adjustable parametéss, poo, as explained above, they exhibit the same profiles over two
Aons Pon» Adny Pun. andB. The values ofj=0.60(a.u)  sensitive variable@ andu, and are mirror images over the
andd=0.4991(a.u) are determined such that they match theinsensitivev. In cases where the potential contains cyclic
well-known dipole moment value 1.8546 D and yield quad-coordinates, it is easy to show analytically that these two
rupole momentsf,.=—2.319 DA, 6,,=2.635DA, and distributions must yield the same line shapes. For more gen-
6pp=—0.316 DA, which are reasonable in comparison witheral cases, given the fact thaG;“({n)(,B,u,v) and
experimental valueg..=—2.50 DA, 6,,=2.63DA, and Ga(¢y(B,u,v) differ from each other as discussed above, we
6,,=—0.13 DA We adopt the potential form given by suspect that effects resulting from these differences could
(42) and search for a set of potential parameters that enablesancel out in the averaging processes when the integrations
us to obtain satisfactory results for several properties of are evaluated by about 1@andom selections. In the present
dilute H,O gas; e.g., the absorption coefficient, the secondtudy, we do not seek a general and rigorous proof of this
virial coefficient, and the differential cross section. finding, rather we assume it. Then, we can draw the impor-
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tant conclusion that by not considering the frequency detun-
ing correction, the line shape obtained from the formalismincrease significantly as increases. The corresponding self-
satisfying the detailed balance is symmetric. In other wordsbroadened absorption coefficients in the spectral region 300—
if one does not consider the frequency detuning correction]100 cm * based orHITRAN 92 data are plotted in Fig. 4,
one only needs to introduce one line shape function. together with the experimental results of Burehal® and
Second, we find that the calculated contributions fromsome recent measurements of Cornaieal 1’ Using this po-
the frequency detuning associated wjth(w) are opposite tential, we calculated the second virial coefficients at several
to those associated wiffi_ (), and the differences between temperaturé€ and compare them with experimental déta
their magnitudes are always less than numerical errors. This Fig. 5. In addition, the calculated differential cross section
indicates that these correction contributions have the samegether with experimental dataare plotted in Fig. 6. We
magnitudes, but with different signs; this is not surprisingnote that all these physical quantities are associated with di-
since we have already noted our finding for.(w) and lute water vapor, and as shown by these figures, the agree-
X -(w). In general, the values of the correction contributionments between the theoretical predictions and the laboratory
for y + (w) are positive and those fr_(w) are negative for measurements are good.
>0 andvice versafor w<0. In addition, we find that the Based on the same potential model, we calculated the
correction contributions are significant, especially at hightwo line shape§ ., (w) andy_(w) for several temperatures
frequencies, but they tend to become negligible near the lineanging from 220 to 330 K that are of interest in the atmo-
center. spheric applications and the corresponding absorption coef-
Now, we are ready to present some results. We find thaficients. Some ofy, () obtained for 220, 240, 260, 280,
by adopting Ago/k=1.05<10" K, poo=0.245A, Agy/k 300, and 320 K with frequencies ranging from1600 to
=2.0x10° K, poy=0.36 A, A,y/k=4.0x10? K, puy 1600 cm?® are presented in Fig. 7, and the corresponding
=0.46 A, and B/k=9.0x10° K, one is able to obtain %_(w) are their reflections about the=0 axis. As shown in
Y+ (w) andy_ (w) such that the calculated absorption at 296the figure, thes& | (w) andy_ (w) are asymmetric and their
K can fit the experimental results in the spectral region 300-magnitudes increase as the temperature decreases. We note
1100 cm? very well. We note that because this window that the line shapeg.. (») andy_(w) presented here do not
region is located on the high-frequency side of the pure roinclude a factor 1?2, as shown in Eq(13). If one wants to
tational band, the calculated absorption arises mainly frontompare them to other line shap@sg., a Lorentzian one
the contributions of¢, (w). The two line shape§. (w) and  has to multiply them by the factor @f. Also, the magnitude
Y_(w) at 296 K, together with their megp(w), are plotted of ¥, (w) or y_(w) asw—0 should approach the Lorentz-
in Fig. 3. As shown in the figure, the magnitudesyof(w) ian half-width, although the present theory is not valid in this
are larger thary_(w) and the relative gaps between themlimit. It is clear, however, that the theoretical shapes are
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super-Lorentzian for the displacements up to around 40€he calculated absorption coefficients in the window region
cm ! and then become sub-Lorentzian for larger displace600—1250 cm'. We note that for a specified frequeney
ments. In fact, the line shape must approach zero at least age exclude completely any contribution from lines that are
fast as an exponential. This can be shown from the analytiowithin [w—25 cm 1,w+25 cmi 1] in the calculations. As

ity of the correlation function; the successive derivatives ofshown by Fig. 8, the strong, negative temperature depen-
C(t) in thet=0 limit correspond to moments of the line dence of self-continuum is clearly demonstrated.

shape in frequency space. Because the derivatives are all

finite, this implies that all the moments of the line shape aréll- DISCUSSIONS AND CONCLUSIONS

also finite and, therefore, the line shape must approach zero In comparison with our previous studies on the far-wing
faster than any inverse power of In Fig. 8, we present all line shape, there are several important advances that have

10720 T T . .

T = 220, 230, ..., 320, 330 K

FIG. 8. The self-broadened absorption
coefficient (in  units of cnf
molecule* atm™) in the window re-
gion 600—1250 cm* calculated forT
=220, 230, 240, 250, 260, 270, 280,
290, 300, 310, 320, and 330 K in order
from top to bottom. A cut-off 25 crt

is used to exclude completely any con-
tribution of lines that are closer than
this limit.

ABSORPTION COEFFICIENT (cm? molecule™ atm™")

600 700 800 900 1000 1100 1200
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been made in the present study. First of all, by clearly dishitudes ofy . (w) are significantly larger tha_(w) for o
tinguishing the sensitive and insensitive variables and by>0 andvice versafor <0, and these gaps become larger
modifying the Monte Carlo subroutine used previously toas w increases. We note that the conclusion concerning the
handle integrations whose volume is not rectangular, the efasymmetry claimed here is applicable for the band average
fectiveness of the important sampling is enhanced signifiline shapes and has nothing to do with individual lines.
cantly. As a result, by accounting for random selections of  Finally, we would like to make a few comments on the
the order of 10 (which is comparable to or slightly more vibrational bands. We expect the main conclusions about the
than that required for lower-dimensionality casesne is line shapes for the pure rotational band would remain true,
able to evaluate 11-dimensional integrations. but some different features could show up because the con-
Second, we have carried out numerical calculationgributions toy, (w) andy_(w) from the frequency detuning
based on the formalism that satisfies the detailed balanderms depend strongly on the band structure. We expect that
principle exactly and has a higher accuracy in the short-timé¢he more unevenly and the more widely the lines are distrib-
limit. As expected, this increases the difficulty because theited within the band of interest, the contributions from the
evaluation of the integrands requires more calculations. A§equency detuning corrections will increase and the more
shown by Eqs(3) and (4), within this formalism the dipole X (w) differs from’y (). It is well known that the line
moment operator appears in formulas in such a way that it igistributions of the vibrational bands are quite different from
always sandwiched by the density matrix. However, theséhat for the pure rotational one. The former’s lines are, more
two operators have different characters: one depends on tifé less, evenly located on both sides of the band centers, but
coordinates only while the other contains differential operathe latter’s are always on the high-frequency side because the
tors. No matter what kind of representation is chosen, th&and center is zero. We note that according to the definition,
sandwiched operators require more loops to evaluate thelhe average positive resonance frequeacintroduced here
values. As in our previous studies, we use the coordinaté$ not the band center. These two are very close for the vi-
representation because it enables us to include more popfrational bands, but are quite different for the pure rotational
lated states; we also introduce the distribution functions an@and. We expect that for the vibrational band the frequency
store them in files because it enables us to obtain values éfetuning corrections could become smaller. This means that
the integrand with less CPU time. But, to calculate thesex+(w) and x_(w) differ from each other by smaller
distributions with a high cut-offj,, requires long CPU amounts. Meanwhile, we could not draw any conclusion
times. We note that for temperatures of interest in atmo&bout which magnitude is larger because this is related to the
spheric applicationg,.,=23 is enough, but for higher tem- SPecial structure of the pure rotational band. It has been
peratures, a highgk,scWould be necessary. With these input known for years that the line shapes for £@erived from
files, to obtain values of the integrand becomes relativelgxPerimental data are asymmetric and they are not the same
easy. Combing the technique mentioned above to reduce ttfér different band$”# So far, there has been no theoretical
number of random selection to the order of 16ne is able €XPlanation as to why the different bands have different
to complete the evaluation of 11-dimensional integrationsShapes without assuming that the interaction depends sensi-
and to obtain a line shape in one day with one workstation{ively on the vibrational quantum numbers, which seems un-
Finally, by carrying out band averages in a more sophis!ikeély to be true. We think that both from the theoretical and
ticated way, we can calculate the two line shape functions. Iipractical points of view, to investigate the lines shapes for
addition, the effects resulting from the frequency detuningdifferent bands is an interesting subject to pursue.
have been taken into account in the averaging processes. We
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